CAPM and option pricing with elliptically contoured distributions

نویسندگان

  • Mahmoud Hamada
  • Emiliano A. Valdez
چکیده

This paper offers an alternative proof of the Capital Asset Pricing Model (CAPM) when asset returns follow a multivariate elliptical distribution. Empirical studies continue to demonstrate the inappropriateness of the normality assumption for modelling asset returns. The class of elliptically contoured distributions, which includes the more familiar Normal distribution, provides flexibility in modelling the thickness of tails associated with the possibility that asset returns take extreme values with non-negligible probabilities. As summarized in this paper, this class preserves several properties of the Normal distribution. Within this framework, we prove a new version of Stein’s lemma for this class of distributions and use this result to derive the CAPM when returns are elliptical. Furthermore, using the probability distortion function approach based on the dual utility theory of choice under uncertainty, we also derive an explicit form solution to call option prices when the underlying is logelliptically distributed. The Black-Scholes call option price is a special case of this general result when the underlying is log-normally distributed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Theory of Elliptically Contoured Distributions

The theory of elliptically contoured distributions is presented in an unrestricted setting (without reference to moment restrictions or assumptions of absolute continuity). These distributions are defined parametrically through their characteristic functions, and then studied primarily through the use of stochastic representations which naturally follow from the seminal work of Schoenberg on sp...

متن کامل

A Note on Hilbertian Elliptically Contoured Distributions

In this paper, we discuss elliptically contoured distribution for random variables defined on a separable Hilbert space. It is a generalization of the multivariate elliptically contoured distribution to distributions on infinite dimensional spaces. Some theoretical properties of the Hilbertian elliptically contoured distribution are discussed, examples on functional data are investigated to ill...

متن کامل

Theory of cross sectionally contoured distributions and its applications

We discuss generalization of elliptically contoured distributions to densities whose contours are arbitrary cross sections in the framework of group invariance. This generalization leads to much richer family of distributions compared to the elliptically contoured distributions. The basic property of the elliptically contoured distribution is the independence of the \length" and the \direction"...

متن کامل

The Predictive Distribution for the Heteroscedastic Multivariate Linear Models with Elliptically Contoured Error Distributions

This paper considers the heteroscedastic multivariate linear model with errors following elliptically contoured distributions. The marginal likelihood function of the unknown covariance parameters and the predictive distribution of future responses have been derived. The predictive distribution obtained is a product of m multivariate Student’s t distributions. It is interesting to note that whe...

متن کامل

Geometric disintegration and star-shaped distributions

Geometric and stochastic representations are derived for the big class of p-generalized elliptically contoured distributions, and (generalizing Cavalieri?s and Torricelli?s method of indivisibles in a non-Euclidean sense) a geometric disintegration method is established for deriving even more general star-shaped distributions. Applications to constructing non-concentric elliptically contoured a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007